Topics in the June 2007 Exam Paper for CHEM1001

Click on the links for resources on each topic.

2007-J-2:

- Elements and Atoms
- Chemical Equations
- Stoichiometry

2007-J-3:

- Lewis Model of Bonding
- VSEPR
- Elements and Atoms

2007-J-4:

- Stoichiometry
- Chemical Equations

2007-J-5:

- Chemical Equations
- Stoichiometry

2007-J-6:

- Thermochemistry
- Chemical Equilibrium

2007-J-7:

- Introduction to Electrochemistry
- Electrochemistry
- First Law of Thermodynamics

2007-J-8:

- Electrolytic Cells
- Introduction to Electrochemistry
- Electrochemistry
- Batteries and Corrosion

2007-J-9:

• Chemical Equilibrium

2007-J-10:

• Gas Laws

The University of Sydney 22/01(a)

FUNDAMENTALS OF CHEMISTRY 1A - CHEM1001 FIRST SEMESTER EXAMINATION

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 17, 21 and 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gained		Marker
13	9			
14	11			
15	8			
16	7			
18	5			
19	4			
20	7			
22	4			
23	5			
Total	60			
Check	Total			

JUNE 2007

CHEM1001	2007-J- 2	June 2007	22/01(a)
• Write balanced equatio	ns for the following nuclear rea	actions.	Marks 4
Naturally occurring tho undergoes alpha decay.	rium 232		
A nuclide undergoes be and produces caesium	ta decay 33.		
• A cook uses a microwa is 0.012 m. Calculate t	ve oven to heat up a meal. The he frequency and energy of a p	e wavelength of the radiation hoton of this radiation.	2
Frequency:	Energy:		
• What mass of calcium of	chloride is required to make 25	0 mL of a 0.1 M solution?	3
	Answer		
What amount of chloric	le ions (in mol) is present in 30	0.0 mL of this solution?	
	Answer:		

atom

Molecular shape

Marks 9

• Complete the following table.						
Molecular formula	SF_6		NH ₃			
Name		chlorine trifluoride				
Lewis structure						
Number of bonding electron pairs on central atom						
Number of non- bonding electron pairs on central						

2

• Silicon is essential to the computer industry as a major component of chips. It has three naturally occurring isotopes, the relative abundance of each being given below. Calculate the atomic mass of silicon.

Isotope	Mass of isotope (a.m.u.)	Relative abundance
²⁸ Si	27.9769	92.23%
²⁹ Si	28.9765	4.67%
³⁰ Si	29.9738	3.10%

	r				
		Anowa	r.		
		LUSWE	1.		

What mass of oxygen is required for the c what masses of carbon dioxide and water	complete combustion of 454 g of butane and are produced?
During physical activity, lactic acid forms for muscle soreness. Elemental analysis s 6.71% H and 53.3% O. Determine the em	s in the muscle tissue and is responsible shows that it contains by mass 40.0% C, apirical formula of lactic acid.
	Answer:
Given that lactic acid has a molar mass of formula.	Answer: 90.08 g mol ⁻¹ , determine its molecular
Given that lactic acid has a molar mass of formula.	Answer: 90.08 g mol ⁻¹ , determine its molecular
Given that lactic acid has a molar mass of formula.	Answer: 90.08 g mol ⁻¹ , determine its molecular

CHEM1001	2007-J- 5	June 2007	22/01(a)
• If 50 mL of a 0.10 M solution of AgNO ₃ is mixed with 50 mL of a 0.40 M solution of Na ₂ CO ₃ , what mass of Ag ₂ CO ₃ will precipitate from the reaction?			
	Answer		_
What is the final con	\sim 1 centration of $\rm{CO_3}^{2-}$ ions in the sol	ution after the above reaction?	-
			-
	Answer:		-
• Give balanced ionic cases.	equations for the reactions that occ	cur in each of the following	3
Sodium metal is added	to excess water.		
Solutions of cobalt(II) r	nitrate and sodium phosphate are n	nixed.	
Solid calcium carbonate	e is dissolved in dilute nitric acid.		
L			-1

•	• A 60.0 g piece of Ag metal is heated to 90.0 °C and dropped into 120.0 g of water at 25.0 °C in a well insulated container. The final temperature of the Ag-H ₂ O mixture is 26.7 °C. Calculate the specific heat of silver. Data: The specific heat of water is 4.18 J g^{-1} K ⁻¹ .				
	Answer:	-			
•	Determine K_c for the reaction $\frac{1}{2}O_2(g) + Na_2O(s) \implies Na_2O_2(s)$ at 25 °C.	2			
	Data: Na ₂ O(s) \rightleftharpoons 2Na(s) + $\frac{1}{2}O_2(g)$ $K_c = 2 \times 10^{-25}$ at 25 °C.				
ı	Na ₂ O ₂ (s) \Longrightarrow 2Na(s) + O ₂ (g) $K_c = 5 \times 10^{-29}$ at 25 °C.				
	Answer:				

Marks • Consider a cell composed of the following half-reactions. 2 $Ag^+(aq) + e^- \rightarrow Ag(s)$ $Cr(s) \rightarrow Cr^{3+}(aq) + 3e^{-}$ What is the balanced equation for the spontaneous reaction? What is the value of E° for the cell? Relevant standard reduction potentials are on the data sheet. Answer: • Calculate the standard heat of reaction for the following reaction. 2 $Zn(s) + 2Cu^{+}(aq) \rightarrow 2Cu(s) + Zn^{2+}(aq)$ $\Delta H_{\rm f}^{\rm o} = +51.9 \text{ kJ mol}^{-1} \text{ for } {\rm Cu}^+({\rm aq})$ Data: $\Delta H_{\rm f}^{\rm o} = -152.4 \text{ kJ mol}^{-1} \text{ for } \text{Zn}^{2+}(\text{aq})$ Answer:

CHEM1001	2007-J- 8	June 2007	22/01(a)
• An electrolytic cell contain through the cell, depositing identity of the metal, M?	as a solution of MCl_3 . A total ch g 0.65 g of the metal, M, at the c	harge of 3600 C is passed withode. What is the	Marks 4
	Answer:		_
• A motol motol hudrido hod	them, has the fallowing shouthon	d u ototion.	2
• A metal-metal hydride bar MH(s) M(s) 0	$OH^{-}(aq) \parallel OH^{-}(aq) \mid NiO(OH)(q)$	a notation: (OH) ₂ (s)	5
Which component of the b	attery is the cathode?	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	_
Give the balanced half equ	ation of the reaction that takes p	place at the cathode.	_
Why is it important that all	redox active species are solids	in this reaction?	
	-		

CHEM1001	2007-J- 9		June	2007	22/01(a)
• $K_p = 7.0$ for the reaction Suppose a 1.0 L flask is fill Find the pressures of all the	$Br_2(g) + Cl_2(g)$ led with 0.30 atm Br ree gases at equilibri	(g) and um.	2BrCl(g) 0.30 atm Cl ₂ (g	at 400 K. g) at 400 K.	Marks 4
$p(Br_2)$:	$p(Cl_2)$: F THIS PACE IS F	TOR RO	p(BrCl):	ING ONLY	

		1
•	The <i>Voyager I</i> spacecraft determined that the atmospheric pressure at the surface of Saturn's moon, Titan, is 1.6 times that of earth and that the atmosphere contains 6.0 mol % methane, CH ₄ . What is the partial pressure of methane on Titan in mmHg?	Marks 2
	Anguyan	-
	Answer:	_
•	Many gases are available for use in compressed gas cylinders, in which they are stored at high pressures. Calculate the mass of O_2 that can be stored at 20 °C and 170 atm pressure in a cylinder with a volume of 60.0 L.	3
	Answer:	-
	What volume would this mass of oxygen occupy at 1.00 atm pressure and 20 °C?	
		-
		-
	Answer:	1

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	imal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	Μ					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р								

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Electrochemistry
$E = h v = h c / \lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = -Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{\frac{1}{2}} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{\mathrm{f}} = K_{\mathrm{f}}m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{k_1} \left(\frac{1}{k_1} - \frac{1}{k_1} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} \left(RT ight)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log 10 \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
нурі] 1.0	1 rogen H 008		_															2 нешим Не 4.003
LIT	3 ніим	4 beryllium											5 boron	6 carbon	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
I 60	2 i 941	Be 9.012											B	C	N	O	F	Ne 20.18
1	1	12											13	12.01	14.01	10.00	17	18
sor N	Na Na	MAGNESIUM Mg											ALUMINIUM	silicon Si	PHOSPHORUS P	SULFUR S	CHLORINE Cl	ARGON Ar
22	.99	24.31		1		1	1	1					26.98	28.09	30.97	32.07	35.45	39.95
1 рота	9 ASSIUM	20 calcium	21 scandium	22 TITANIUM	1 23 VANADIUM	24 chromium	25 manganese	26 IRON	27 cobalt	28 NICKEL	29 COPPER	30 zinc	31 gallium	32 germanium	33 ARSENIC	34 selenium	35 bromine	36 krypton
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39	87	40.08	44.96 30	47.88	<u> </u>	52.00 42	54.94 43	55.85 44	58.93 45	58.69 46	63.55 47	65.39 48	69.72 49	72.59 50	74.92	/8.96	79.90 53	83.80 54
RUB	IDIUM	STRONTIUM	YTTRIUM	ZIRCONIU	M NIOBIUM	T Z MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM					ANTIMONY	TELLURIUM	IODINE	XENON
85	KD 5.47	Sr 87.62	Y 88.91	Zr	ND 92.91	Mo 95,94	I C [98,91]	Ru 101.07	Rh 102.91	Pd 106.4	Ag 107.87	Cd	In	Sn 118.69	Sb 121.75	127.60	I 126.90	Xe 131.30
5	55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAE	CS S	barium Ba		HAFNIUM HAFNIUM	TANTALUM Ta	TUNGSTEN	RHENIUM Re		IRIDIUM	PLATINUM Pt		MERCURY Hg	THALLIUM	Pb	візмитн Ві	POLONIUM	ASTATINE At	radon Rn
132	2.91	137.34		178.4	9 180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
8 FRAM	87 NCIUM	88 radium	89-103	104 RUTHERFOR	105 DUM DUBNIUM	106 seaborgium	107 BOHRIUM	108 hassium	109 meitnerium	110 darmstadtium	111 ROENTGENIUM							
F	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
[22	[3.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]							
		57	7 6	58	59	60	61	62	63	64	65	5	66	67	68	69	70	71
LANTI	LANTHANIDES		NUM CE		PRASEODYMIUM Dr	NEODYMIUM	PROMETHIUM Pm	samarium Sm	EUROPIUM		M TERBI	UM DYS			ERBIUM Fr	THULIUM	VTTERBIUM Vh	LUTETIUM T 11
		138.	91 14	0.12	140.91	144.24	[144.9]	150.4	151.96	157.25	5 158.	93 10	52.50 1	64.93	167.26	168.93	173.04	174.97
	ACTINIDES) (00	91	92	93	94	95	96	97	7	98	99	100	101	102	103
ACT			\mathbf{c}	h	Pa	U	Np	Pu	AMERICIUM	Cm	BERKEL	K CAL	Cf	Es	Fm	Mendelevium	NOBELIUM	LAWRENCIUM
		[227	.0] 23	2.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]] [247	[.1] [2	52.1] [252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

22/01(b)